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We prove the Strong Maximum Principle (SMP) under suitable assumptions for
a class of quasilinear parabolic problems with the p-Laplacian, p > 1, on bounded
cylindrical domains of RN+1,

∂tu− Δpu− λ|u|p−2u ≥ 0,

with nonnegative initial–boundary conditions and λ ≤ 0, and we give some coun-
terexamples to the SMP if some of our assumptions are violated. We show that the
Hopf Maximum Principle holds for 1 < p < 2, and give a counterexample to it for
p > 2. Also the Weak Maximum Principle for λ ≤ λ1 is established.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this article, ΩT := Ω × (0, T ) denotes an (N + 1)-dimensional cylinder, where Ω ⊂ R
N

(N ≥ 1) is a bounded domain with the boundary ∂Ω, T ∈ (0,+∞), and ∂ΩT := ∂Ω × (0, T ) denotes its
cylindrical surface. The boundary ∂Ω is assumed to be a compact manifold of class at least C1. We consider
the following parabolic problem:

Lλ[u] := ∂tu− Δpu− λ|u|p−2u ≥ 0, (x, t) ∈ ΩT ,

u0(x) := u(x, 0) ≥ 0, x ∈ Ω,

u(x, t) ≥ 0, (x, t) ∈ ∂ΩT .

⎫⎪⎬
⎪⎭ (P)

Here λ ∈ R, p > 1, ∂tu := ∂u/∂t, and Δpu := div(|∇xu|p−2∇xu) is the p-Laplacian, with the spatial
gradient ∇xu. Assume also that u0 ∈ W 1,p(Ω), where W 1,p(Ω) is a standard Sobolev space.
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We deal with weak supersolutions (further referred to as solutions) of problem (P) (see [4,10] for more
details), i.e., with Lebesgue-measurable functions u : ΩT → R satisfying

u ∈ C
(
[0, T ] → L2(Ω)

)
∩ Lp

(
(0, T ) → W 1,p(Ω)

)

and ∫
Ω

uϕdx|τ0 +
∫
Ωτ

(
−u

∂ϕ

∂t
+ |∇xu|p−2(∇xu,∇xϕ)

)
dx dt− λ

∫
Ωτ

|u|p−2uϕdx dt ≥ 0

for every τ ∈ (0, T ] and for all bounded nonnegative testing functions

ϕ ∈ W 1,2((0, τ) → L2(Ω)
)
∩ Lp

(
(0, τ) → W 1,p

0 (Ω)
)

with ϕ ≥ 0 a.e. in Ωτ .

We remark that the boundary trace mapping u 	→ u|∂Ω :W 1,p(Ω) → W 1−(1/p),p(∂Ω) (↪→ Lp(∂Ω)) is contin-
uous (i.e., bounded) by J. Nečas [12, §2.5].

In the simplest and most common sense, the Strong Maximum Principle (abbreviated as SMP) says that
any nontrivial solution of (P) must be strictly positive in ΩT , whereas the Weak Maximum Principle (WMP)
asserts that the solution is just nonnegative in ΩT . The Hopf Maximum Principle (HMP) complements the
SMP and states that if the positive solution has an outer normal derivative at the boundary point of ΩT ,
then this derivative must be negative.

In this article we show that, in general, the SMP and HMP cannot be satisfied without some restrictions
on the initial data, or because of certain “intrinsic” properties of the p-Laplacian, such as degeneracy or
singularity at points where the gradient vector field of the supersolution of (P) vanishes.

Let us state our main results.

Theorem 1.1 (SMP). Let λ ≤ 0, u0 ∈ W 1,p(Ω), and assume that u ∈ C1(ΩT ) satisfies (P).

1. If p > 2 and u0 > 0 in Ω, then u > 0 in ΩT .
2. If 1 < p < 2 and u0 �≡ 0 in Ω, then there exists t̄ ∈ (0, T ] such that u > 0 in Ωt̄.

Note that we are not able to remove the assumption u0 > 0 in Ω in the first case, nor are we able
to guarantee the SMP on the whole space–time domain ΩT in the second case. Section 4 contains the
corresponding counterexamples.

For the sake of completeness, we give the SMP for 1 < p < 2 on hyperplanes {(x, t) ∈ ΩT : t = t0}, which
has been proved in [11, Theorem 1, Part 1, p. 98] under additional assumptions on the regularity of u0 and
u0 �≡ 0 in Ω.

Theorem 1.2. Let λ ≤ 0, 1 < p < 2 and assume that u ∈ C1(ΩT ) satisfies (P) with u0 ≥ 0 in Ω. If there
exists (x, t) ∈ ΩT such that u(x, t) = 0, then u(·, t) ≡ 0 in Ω.

The next clarification of maximum properties of solutions of (P) is the Hopf Maximum Principle, given
by the next theorem.

Theorem 1.3 (HMP). Let Ω have a C2-boundary ∂Ω, λ ≤ 0, and u0 ∈ W 1,p(Ω). Assume that u ∈ C1(ΩT ∪
{(x1, t1)}) satisfies (P) and u(x1, t1) = 0 for some (x1, t1) ∈ ∂ΩT . If 1 < p < 2, u0 �≡ 0 in Ω, and the SMP
holds for u in Ωt̄ with t1 < t̄ ≤ T , then the outer normal derivative at (x1, t1) is negative, i.e.

∂u(x1, t1)
∂ν

< 0,

where ν is the outer unit normal to ∂ΩT at (x1, t1).
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In Section 4 we also present a counterexample to the HMP for the case p > 2.
The proofs of theorems above mostly take advantage of the Weak Comparison Principle (WCP), which

says that if for some u, v we have Lλ[u] ≤ Lλ[v] in the domain E and u ≤ v on the boundary ∂E, then
u ≤ v in E. The proof of the WCP is known under slightly stronger conditions (see, e.g., [13]), but it can
be generalized directly to our case. However, we show it in Section 2 for completeness.

In addition to the WCP, there arises the question about the validity of the Strong Comparison Principle
(SCP), which states that if Lλ[u] ≤ Lλ[v] in E and u ≤ v on ∂E, then either u ≡ v, or u < v in E. In
Section 4 we make some remarks in this direction.

For a better understanding of the problem notice that if u satisfies (P) and ∂tu ≤ 0 on Ωt̄ for some
t̄ ∈ (0, T ], then the SMP and HMP hold on Ωt̄ for λ ≤ 0. Moreover, if we assume in addition that u = 0 on
∂Ωt̄, then the SMP and HMP hold on Ωt̄ for λ < λ1 (see [2,3]). Indeed, by transferring ∂tu to the right-hand
side of (P), we arrive at

−Δpu− λ|u|p−2u ≥ 0, (x, t) ∈ Ω × {t0},

for all t0 ∈ (0, t̄ ], and hence get the SMP and HMP. Hereinafter, we denote by λ1 the first eigenvalue of the
negative Dirichlet p-Laplacian −Δp in Ω:

λ1
def=

{∫
Ω

|∇u|p dx: u ∈ W 1,p
0 (Ω) with

∫
Ω

|u|p dx = 1
}
.

It is known that λ1 > 0 and λ1 is simple due to the result of Anane [1, Théorème 1, p. 727].
Maximum and comparison principles are among the essential tools in the theory of linear and nonlinear

PDE’s. The main areas of their application are proving existence or nonexistence and uniqueness or multi-
plicity of solutions to boundary value problems. Among many other references, the classical ones for linear
PDEs are Friedman [8] and Protter & Weinberger [14].

Maximum principles for nonlinear elliptic PDEs have been studied intensively by Pucci & Serrin [15],
Vázquez [16], and many others. A significant progress in studying the comparison principles for such kind of
PDEs has been made in Cuesta & Takáč [2,3]. At the same time, to our best knowledge, there are very few
articles concerning the maximum and comparison principles for nonlinear (especially quasilinear) parabolic
problems. We can mention only the works of Nazaret [11] and Vétois [17]. The first article treats the SMP
for weak solutions of (P) with λ ≤ 0 on hyperplanes {(x, t) ∈ ΩT : t = t0}. The proof of [11, Theorem 1,
Part 2, p. 98] for p > 2 needs some additional, rather strong assumptions on the initial function u0, such
as u0 > 0 in Ω or ∂u

∂ν < 0 on ∂Ω, since in these cases one can guarantee the strict positivity of t0 defined in
[11, p. 99],

t0
def= inf

{
t > 0: ∃x ∈ Ω, u(x, t) = 0

}
.

Indeed, otherwise there might exist a sequence (xn, tn) ∈ Ω× (0, T ) such that u(xn, tn) = 0 with xn → x0 ∈
∂Ω and tn → t0 = 0 as n → +∞. Nevertheless, our Theorem 1.1, Part 1, shows that for p > 2 and u0 > 0
in Ω the solution is strictly positive in the whole of ΩT . Paper [17] deals with the anisotropic parabolic
p-Laplacian equations in a setting different from ours. The special case of equation ∂tu−Δpu = 0 in ΩT is
treated in DiBenedetto [4], Chapter VI (for 2 < p < ∞) and Chapter VII (for 2N

N+1 < p < 2), where a kind of
local strong maximum principle is obtained from local Harnack’s inequality. Further results on a local strong
maximum principle and local Harnack’s inequality for this equation, including some counterexamples, can
be found in the recent monograph by DiBenedetto, Gianazza, and Vespri [7] and in their articles [5,6]. The
aim of the present paper is to examine more carefully the maximum and comparison principles for (P).
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The article is organized as follows. In Section 2 we prove the WCP for λ ≤ 0 and the WMP for λ ≤ λ1.
Section 3 contains the proofs of the main results – Theorem 1.1 and Theorem 1.3. Finally, in Section 4 we
present some counterexamples.

2. Weak maximum and comparison principles

In this section we prove the WCP in Theorem 2.1 and the WMP in Theorem 2.4. Using Theorem 2.1 we
prove an auxiliary result, Lemma 2.3, which will be used in the proof of the SMP (Theorem 1.1) in Section 3.

Theorem 2.1 (WCP). Let λ ≤ 0, u0, v0 ∈ W 1,p(Ω), and let

u, v ∈ C
(
[0, T ] → L2(Ω)

)
∩ Lp

(
(0, T ) → W 1,p(Ω)

)
(2.1)

with ∂tu, ∂tv ∈ L2(ΩT ) satisfy

Lλ[u] ≤ Lλ[v], (x, t) ∈ ΩT ,

u0 ≤ v0, x ∈ Ω,

u ≤ v, (x, t) ∈ ∂ΩT .

⎫⎪⎬
⎪⎭ (2.2)

Then u ≤ v in ΩT .

Proof. 1. Let (u− v)+ := max{u− v, 0} and assume, by contradiction, that

Ω+
T :=

{
(x, t) ∈ ΩT : u(x, t) > v(x, t)

}

has positive Lebesgue measure in R
N+1. Obviously (u− v)+ ≥ 0 in ΩT and

(u− v)+ ∈ C
(
[0, T ] → L2(Ω)

)
∩ Lp

(
(0, T ) → W 1,p(Ω)

)
,

by assumption (2.1). Testing the first inequality of (2.2) by (u− v)+ we get
∫

Ω+
T

∂(u− v)
∂t

(u− v) dx dt +
∫

Ω+
T

(
|∇xu|p−2∇xu− |∇xv|p−2∇xv

)
(∇xu−∇xv) dx dt

− λ

∫

Ω+
T

(
|u|p−2u− |v|p−2v

)
(u− v) dx dt ≤ 0. (2.3)

Note that by Hölder’s inequality, (2.1), and ∂tu, ∂tv ∈ L2(ΩT ), we obtain
∫

Ω+
T

∣∣∣∣∂(u− v)
∂t

∣∣∣∣|u− v| dx dt ≤
∥∥∂t(u− v)

∥∥
L2(ΩT ) ·

∥∥(u− v)
∥∥
L2(ΩT ) < +∞;

consequently, the first term in (2.3) exists as a Lebesgue integral. Using this fact we conclude that

∫

Ω+
T

∂(u− v)
∂t

(u− v) dx dt ≡ 1
2

∫
Ω

T∫
0

∂

∂t

(
(u− v)+

)2
dt dx

= 1
2

[∫
Ω

(
(u− v)+(x, T )

)2
dx−

∫
Ω

(
(u− v)+(x, 0)

)2
dx

]
≥ 0, (2.4)

where the nonnegativity follows from the assumption u0 ≤ v0, hence, (u− v)+(x, 0) ≡ 0.
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On the other hand, using convexity of u ∈ W 1,p
0 	→ 1

p

∫
Ω
|∇u|pdx we deduce

∫

Ω+
T

(
|∇xu|p−2∇xu− |∇xv|p−2∇xv

)
(∇xu−∇xv) dx dt ≥ 0,

for all p > 1; and, in the same way, the third term in (2.3) is also nonnegative, since λ ≤ 0. Thus, (2.3)
is possible if and only if every term is equal to zero. By our assumption u ≤ v on ∂ΩT and (2.4), we get
(u − v)+ = 0 on ∂Ω+

T . Since ∇xu = ∇xv in Ω+
T we conclude that u ≡ v in Ω+

T , which contradicts our
assumption that u > v on a set of positive Lebesgue measure in R

N+1. �
Remark 2.2. The Weak Maximum Principle (WMP) for λ ≤ 0 follows directly from Theorem 2.1, by taking
u ≡ 0 in ΩT .

Later, in order to prove the SMP we need another version of the WCP in more general space–time
domains, but with restrictions on boundary conditions. We impose rather strong regularity hypotheses (C1)
that enable a simple, direct application of this lemma to our needs.

Lemma 2.3. Let E ⊂ R
N+1 be a bounded domain with boundary ∂E. Assume λ ≤ 0 and u, v ∈ C1(E) satisfy

{Lλ[u] ≤ Lλ[v], (x, t) ∈ E,

u ≤ v, (x, t) ∈ ∂E.

Then u ≤ v in E.

Proof. Since E is bounded, there exists a cylinder B × (t1, t2) ⊂ R
N+1 with a bounded base B ⊂ R

N such
that E ⊂ B × (t1, t2). Arguing now as in the proof of Theorem 2.1 we get a contradiction. Thus, u ≤ v

in E. �
Now we prove the WMP for λ ≤ λ1 in the following formulation.

Theorem 2.4. Let λ ≤ λ1 and assume that u satisfies weakly

⎧⎪⎨
⎪⎩

Lλ[u] ≥ 0, (x, t) ∈ ΩT ,

u0 ≥ 0, x ∈ Ω,

u = 0, (x, t) ∈ ∂ΩT ,

with u ∈ L2(ΩT ). Then u ≥ 0 in ΩT .

Proof. Note that for λ ≤ 0 the WMP follows from Theorem 2.1. Therefore, we will assume λ ∈ (0, λ1].
Denote u− def= max{−u, 0} and suppose, contrary to our claim, that

Ω−
T :=

{
(x, t) ∈ ΩT : u(x, t) < 0

}
�= ∅.

Testing Lλ[u] ≥ 0 by u− we get

∫
−

∂u

∂t
u dx dt +

∫
−

|∇xu|p dx dt− λ

∫
−

|u|p dx dt ≤ 0.

ΩT ΩT ΩT
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On one hand, similarly to (2.4) we find that the first term is nonnegative. On the other hand, since Ω−
T ⊆ ΩT ,

we get
∫
ΩT

∣∣∇x

(
u−)∣∣p dx dt− λ

∫
ΩT

∣∣u−∣∣p dx dt ≥ (λ1 − λ)
∫
ΩT

∣∣u−∣∣p dx dt ≥ 0,

for λ ≤ λ1. Hence, arguing as in the proof of Theorem 2.1 we conclude that u− = 0 in ΩT and, consequently,
obtain a contradiction. �
3. Strong Maximum Principle

In this section we prove the SMP for (P). Hereinafter, we denote by

Br(x̄, t̄ ) :=
{
(x, t) ∈ R

N × R: d(x, t; x̄, t̄ ) < r
}

the open ball of radius r > 0 centered at a point (x̄, t̄ ) in R
N+1. Here

d(x, t; x̄, t̄ ) =
√
|x− x̄|2 + (t− t̄ )2 :=

√√√√ N∑
i=1

(xi − x̄i)2 + (t− t̄ )2 (3.1)

is the standard Euclidean distance in R
N+1 between (x, t) and (x̄, t̄ ).

First of all, we need the following auxiliary lemma.

Lemma 3.1. Let λ ∈ R and u ∈ C(ΩT ) satisfies (P) with u0 > 0 in Ω. If u = 0 in some interior point
of ΩT , then there exists (x1, t1) ∈ ΩT and a ball BR(x0, t0) ⊂ ΩT with (x1, t1) ∈ ∂BR(x0, t0) such that

u(x1, t1) = 0, u > 0 in BR(x0, t0), and t1 > t0.

Proof. Let u(x̄, t̄ ) = 0 for some (x̄, t̄ ) ∈ ΩT . Since u0 > 0 in Ω and u is continuous in ΩT , we may assume
that there is no t < t̄ such that u(x̄, t) = 0. Moreover, there exists R1 > 0 such that

u > 0 in BR1(x̄, 0) ∩ {t > 0} ⊂ ΩT .

We move BR1(x̄, t) up by increasing t > 0, until there arises a point (x, t) ∈ ΩT such that

u(x, t) = 0 and (x, t) ∈ ∂BR1(x̄, t̄1). (3.2)

Obviously, t ≥ t̄1. If there exists a point (x1, t1) that satisfies (3.2) and t1 > t̄1, then, taking a smaller ball
which lies entirely in ΩT , we get the desired result. Note also that t̄1 + R1 ≤ t̄ < T < +∞.

Assume now that t = t̄1 for any (x, t) which satisfies (3.2). Taking some R2 < R1, we repeat the above
construction and obtain (x, t) ∈ ΩT and BR2(x̄, t̄2) such that

u(x, t) = 0 and (x, t) ∈ ∂BR2(x̄, t̄2). (3.3)

It is also clear that t ≥ t̄2 > t̄1 and t̄2 + R2 ≤ t̄ < +∞ (see Fig. 1). Again, either there exists (x2, t2) that
satisfies (3.3) with t2 > t̄2, or else t = t̄2 for any such (x, t) satisfying (3.3).

Let us show that there are some step k ∈ N and a point (xk, tk), such that u(xk, tk) = 0 and (xk, tk) ∈
∂BRk

(x̄, t̄k) with tk > t̄k.
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Fig. 1. Construction of the proof.

Suppose that, by contradiction, for every k ∈ N and for any (xk, tk) ∈ ΩT such that u(xk, tk) = 0 and
(xk, tk) ∈ ∂BRk

(x̄, t̄k), we get t̄k = tk. Note that t̄k + Rk ≤ t̄ < +∞ for all k ∈ N and the sequence (tk) is
strictly increasing with

tk+1 > tk +
√
R2

k −R2
k+1. (3.4)

Without lost of generality, we may assume R1 = 1. Fix an integer m ≥ 2 and take Rk+1 = 1 − k
m for

k = 1, 2, . . . , (m− 1). Then, by (3.4), we get

tm > t1 +
m−1∑
k=1

√
R2

k −R2
k+1 = t1 +

m−1∑
k=1

√
2
m

− 2k − 1
m2

≥ t1 + 1√
m

m−1∑
k=1

√
1 − k

m
≥ t1 + 1√

m

m−1∑
k=1

(
1 − k

m

)

= t1 + m− 1
2
√
m

→ +∞ as m → ∞.

But this is impossible since t̄ < T < +∞. This contradiction ends the proof. �
Now we are able to prove the SMP. The proof will be obtained by using techniques similar to [14,

Theorem 2, p. 168].

Proof of Theorem 1.1. Beginning of the proof is the same for both cases, 1 < p < 2 and p > 2.
Suppose the assertion of the theorem is false and u is zero in some interior point of ΩT . Since 0 �≡ u0 ≥ 0

and u ≥ 0 on ∂ΩT for all p > 1, we have 0 �≡ u ≥ 0 on ΩT by the WMP that follows from Theorem 2.1.
Therefore, there exist (x1, t1) ∈ ΩT and a ball BR(x0, t0) ⊂ ΩT with (x1, t1) ∈ ∂BR(x0, t0), such that

u(x1, t1) = 0 and u > 0 in BR(x0, t0). (3.5)

Taking a ball of smaller radius, if necessary, (x1, t1) becomes a unique zero point of u on the corresponding
sphere ∂BR(x0, t0).

For some Br(x1, t1) ⊂ ΩT with r ∈ (0, R) small enough we define the domain D := BR(x0, t0)∩Br(x1, t1)
with the boundary ∂D := C ′ ∪ C ′′, where (see Fig. 2)

C ′ := ∂BR(x0, t0) ∩Br(x1, t1), C ′′ := BR(x0, t0) ∩ ∂Br(x1, t1).

Note that by (3.5) we have ε := inf{u(x, t): (x, t) ∈ C ′′} > 0.
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Fig. 2. Construction of the proof.

Consider now the function

v(x, t) := ε
(
e−αd2 − e−αR2)

, (3.6)

where α > 0 and d := d(x, t;x0, t0) is the Euclidean metric in R
N+1 defined by (3.1). Evidently we have

0 < v ≤ ε in BR(x0, t0), v = 0 on ∂BR(x0, t0), v < 0 in R
N \BR(x0, t0).

Moreover, by definition of ε we get v ≤ u on ∂D for every α > 0.
By direct calculations, for (x, t) ∈ BR(x0, t0) we obtain

Lλ[v] = −2αεe−αd2
(t− t0) − (2α)p−1εp−1|x− x0|p−2e−(p−1)αd2(

2α(p− 1)|x− x0|2 − (p− 2 + N)
)

− λεp−1e−(p−1)αd2(
1 − e−α(R2−d2))p−1 = −2αεe−αd2

H(x, t),

where

H(x, t) := εp−2e−(p−2)αd2

2α
(
λ
(
1 − e−α(R2−d2))p−1

+ (2α)p−1|x− x0|p−2(2α(p− 1)|x− x0|2 − (p− 2 + N)
))

+ (t− t0). (3.7)

The rest of the proof will be different for p > 2 and 1 < p < 2.
1. Let p > 2 and u0 > 0. By Lemma 3.1 we may choose the centers (x0, t0), (x1, t1) ∈ ΩT and radii

R, r > 0 of the balls BR(x0, t0), Br(x1, t1) such that t1 − r > t0. Since for p > 2 every term in (3.7) is
bounded, we choose α > 0 sufficiently large such that H(x, t) ≥ 0 in D, and consequently Lλ[v] ≤ 0 in this
domain. Hence, Lλ[v] ≤ Lλ[u]. Using the fact that v ≤ u on ∂D, we apply the WCP from Lemma 2.3 and
derive that v ≤ u in D. Thus, since u ≥ 0 in ΩT and u ∈ C1(ΩT ), we get

0 = ∇u(x1, t1) · (t1 − t0, x1 − x0) = ∂u(x1, t1)
∂ν

≤ ∂v(x1, t1)
∂ν

= ∇v(x1, t1) · (t1 − t0, x1 − x0) = −2αεR2e−αR2
< 0,

where ν is the outer unit normal to BR(x0, t0). Consequently, we have a contradiction and u > 0 in ΩT .
2. Let 1 < p < 2. If x0 �= x1 then we are able to choose the radius r ∈ (0, R) so small that |x − x0| > r

holds for all (x, t) ∈ D. In this case, since 1 < p < 2, we may choose a sufficiently large α > 0 such that
H(x, t) ≥ 0 in D. Therefore, Lλ[v] ≤ 0 ≤ Lλ[u] and we get a contradiction, arguing as in the case p > 2.

Assume now that x0 = x1. Applying a direct (N + 1)-dimensional generalization of Lemma 2 from [14,
p. 166], we obtain u(·, t1) ≡ 0 in Ω. Consider
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Fig. 3. The graph of v(x, t) for k = 1.

t̄ := inf
{
t: ∃x ∈ Ω such that u(x, t) = 0

}
. (3.8)

If t̄ = 0, then we get a contradiction to u0 �≡ 0 in Ω. Thus, t̄ > 0 and consequently u > 0 in Ωt̄. �
Proof of Theorem 1.2. The proof follows immediately from the proof of Part 2 of Theorem 1.1. �

Now we prove that in the case 1 < p < 2, an arbitrary supersolution of (P) has a negative outer normal
derivative at every point on ∂ΩT at which it is equal to zero.

Proof of Theorem 1.3. The proof is identical to the proof of Theorem 1.1; it is based on an application of
the WCP to u(x, t) and the test function v(x, t) given by formula (3.6). �
Remark 3.2. We are not able to prove the HMP for the case p > 2 using the techniques of Theorem 1.1, since
it works only for t1 > t0. But it is impossible to prove the HMP for p > 2, in general, see Counterexample 3
in Section 4.

4. Counterexamples

In this section we show some counterexamples to Theorems 1.1 and 1.3 if certain assumptions of these
theorems are violated.

Counterexample 1. In the case p > 2 we cannot discard the assumption u0 > 0 in Ω and prove the SMP
only under the assumptions u0 ≥ 0 and u0 �≡ 0 in Ω.

Indeed, consider the function

v(x, t) := (t + 1)x2k(1 − |x|
)
, (4.1)

for x ∈ (−1, 1), t ∈ (0, T ) for any T < ∞ and k ∈ N (see Fig. 3). Let us show that for any λ ∈ R and p > 2
there exist appropriate ε > 0 and k ∈ N such that Lλ[εv] ≥ 0. By direct calculations we get

Lλ[εv] = εx2k(1 − |x|
)

+ εp−1(p− 1)(t + 1)p−12k|x|(2k−1)(p−2)+(2k−2)

×
∣∣2k − (2k + 1)|x|

∣∣p−2((2k + 1)|x| − (2k − 1)
)
− εp−1λ(t + 1)p−1x2k(p−1)(1 − |x|

)p−1
. (4.2)



V.E. Bobkov, P. Takáč / J. Math. Anal. Appl. 419 (2014) 218–230 227
Since p > 2, taking ε > 0 sufficiently small, we make the first summand strictly greater than the third one
for all x such that

1 > |x| ≥ 2k − 1
2k + 1 = 1 − 2

2k + 1 . (4.3)

Moreover, the second summand becomes nonnegative on this interval. Hence, we obtain Lλ[εv] ≥ 0 for all x
that satisfy (4.3).

On the other hand, if the power of |x| satisfies

(2k − 1)(p− 2) + (2k − 2) ≥ 2k, (4.4)

then there exists ε > 0 small enough such that Lλ[εv] ≥ 0 for all |x| < 1 − 2/(2k + 1). From (4.4) we get

p ≥ 2 + 2
2k − 1 → 2 as k → +∞.

Thus, for every p > 2 there exists k ∈ N with property (4.4). Consequently, we are able to chose ε > 0
sufficiently small, such that Lλ[εv] ≥ 0 for x ∈ (−1, 1) and t ∈ (0, T ). Hence, we get a contradiction to the
SMP, since u(0, t) = 0 for any t ∈ (0, T ).

Remark 4.1. Since every term in (4.2) is bounded, we get Lλ[εv] ∈ L∞([−1, 1]× [0, T ]) for every ε > 0 and
every T < ∞.

Remark 4.2. Notice that for p > 2, and assuming only u0 ≥ 0 and u0 �≡ 0 in Ω, we get a contradiction also
to the Strong Comparison Principle. This claim is easily derived from Eq. (4.2) by considering

w1(x, t) = ε1v(x, t) and w2(x, t) = ε2v(x, t),

with v(x, t) defined by (4.1) and ε1, ε2 > 0. We are able to find ε1, ε2 such that 0 < ε1 < ε2 and

Lλ[w1] ≤ Lλ[w2], w1(x, 0) ≤ w2(x, 0).

But, at the same time, w1(0, t) = w2(0, t) for all t ∈ [0, T ].

Remark 4.3. The counterexample given by formula (4.1) can be generalized to the (N +1)-dimensional case
by considering the radial version of (4.1). Another counterexample to the SMP for p > 2 is constructed in
[11, p. 97].

Counterexample 2. In the case 1 < p < 2, the “local” (in time) SMP that holds throughout some cylinder Ωt̄,
0 < t̄ < T , cannot be extended to the SMP on the whole space–time domain ΩT .

Consider the function

v(x, t) := (t− 1)2k sinp(x), (4.5)

for t ≥ 0, x ∈ (0, πp) and k ∈ N (see Fig. 4). Here sinp(x) is a generalization of the basic sine function (see
Lindqvist [9]), and it is the first eigenfunction of the operator −Δp on (0, πp) with zero boundary conditions,
where πp is the first positive zero of sinp(x); i.e.,
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Fig. 4. The graph of v(x, t) for k = 1.

−
(∣∣u′∣∣p−2

u′)′ = λ1|u|p−2u, x ∈ (0, πp);
u(0) = u(πp) = 0;
u > 0, x ∈ (0, πp),

⎫⎪⎪⎬
⎪⎪⎭

(4.6)

where λ1 is the corresponding first eigenvalue.
Obviously, v(x, 0) = sinp(x) ≥ 0 on [0, πp] and v(0, t) = v(πp, t) = 0 for all t ≥ 0. Moreover, v(x, 1) ≡ 0

on [0, πp].
Let us show that, for any λ < λ1, there exists an appropriate ε > 0 such that Lλ[εv] ≥ 0. Using (4.6), by

simple calculations we get

Lλ[εv] = ε sinp(x)
(
2k(t− 1)2k−1 + εp−2(λ1 − λ)

∣∣sinp(x)
∣∣p−2(t− 1)2k(p−1)). (4.7)

Since sinp(x) ≥ 0 on [0, π], we only need to find ε > 0 such that

2k(t− 1)2k−1 + εp−2(λ1 − λ)
∣∣sinp(x)

∣∣p−2(t− 1)2k(p−1) ≥ 0.

The case t ≥ 1 immediately yields Lλ[εv] ≥ 0 for all ε > 0 and λ ≤ λ1. Let now 0 ≤ t < 1. Since
|sinp(x)|p−2 ≥ 1 on (0, πp), we need

εp−2(λ1 − λ)(1 − t)2k(p−1) ≥ 2k(1 − t)2k−1.

Hence, if λ < λ1 and the power 2k − 1− 2k(p− 1) ≥ 0, then there exists ε > 0, which doesn’t depend on t,
such that Lλ[εv] ≥ 0. This is possible if and only if

p ≤ 2 − 1
2k .

Thus, for any p ∈ (1, 2) we are able to choose k ∈ N such that this inequality holds.
As noted above v(x, 1) ≡ 0 on [0, πp] but v(x, t) > 0 in another cases; i.e., the Strong Maximum Principle

doesn’t hold for 1 < p < 2 on ΩT for any T > 1.

Remark 4.4. From (4.7) it can be easily deduced that Lλ[εv] ∈ L∞([0, πp] × [0, T ]) for all T > 0.
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Fig. 5. The graph of v(x, t) for k = 2.

Remark 4.5. It is easy to see that the SCP also doesn’t hold. Indeed, considering

w1(x, t) = ε1v(x, t) and w2(x, t) = ε2v(x, t),

with appropriate k ∈ N and ε1, ε2 > 0 such that ε2 > ε1, we get a contradiction to the SCP.

Remark 4.6. The counterexample given by formula (4.5) can be generalized to the (N + 1)-dimensional
case by using the same technique with the first eigenpair (ϕ1, λ1) of −Δp on Ω ⊂ R

N with zero Dirichlet
boundary conditions.

Even a “stronger” counterexample to the SMP in ΩT than our Counterexample 2 is constructed in
E. DiBenedetto, U.P. Gianazza, and V. Vespri [7, pp. 64–65], Chapter 4, §3.3: For some t̄ ∈ (0, T ), one has
u > 0 in Ωt̄, whereas u = 0 in ΩT \Ωt̄.

Counterexample 3. We show that the Hopf Maximum Principe for p ∈ (12), given by Theorem 1.3, cannot
be generalized to the case p > 2.

Consider the function from Counterexample 1:

v(x, t) := (t + 1)x2k(1 − x), (4.8)

for x ∈ (0, 1) only, t ∈ (0, T ) for any T < ∞ and k ∈ N (see Fig. 5). Using similar arguments, we conclude
that for every p > 2 there exists k ∈ N such that Lλ[εv] ≥ 0 for x ∈ (0, 1) and t ∈ (0, T ). Since for x = 0
and t ∈ [0, T ] we have

∂u(x, t)
∂ν

= −∇xu(x, t) = 0,

we get a contradiction to the HMP.

Remark 4.7. It is also possible to construct an (N + 1)-dimensional counterexample to the HMP for p > 2,
by considering the radial version of the following function

v(x, t) := (t + 1)
(
1 + 2|x|

)(
1 − |x|

)2

for x ∈ (−1, 1) and t ∈ (0, T ), T < ∞.
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